Anderson's Module for Cyclotomic Fields of Prime Conductor
نویسندگان
چکیده
منابع مشابه
Class numbers of real cyclotomic fields of prime conductor
The class numbers h+l of the real cyclotomic fields Q(ζl + ζ −1 l ) are notoriously hard to compute. Indeed, the number h+l is not known for a single prime l ≥ 71. In this paper we present a table of the orders of certain subgroups of the class groups of the real cyclotomic fields Q(ζl + ζ −1 l ) for the primes l < 10, 000. It is quite likely that these subgroups are in fact equal to the class ...
متن کاملNontrivial Galois module structure of cyclotomic fields
We say a tame Galois field extension L/K with Galois group G has trivial Galois module structure if the rings of integers have the property that OL is a free OK [G]-module. The work of Greither, Replogle, Rubin, and Srivastav shows that for each algebraic number field other than the rational numbers there will exist infinitely many primes l so that for each there is a tame Galois field extensio...
متن کاملCyclotomic Fields
Cyclotomic fields are an interesting laboratory for algebraic number theory because they are connected to fundamental problems Fermat’s Last Theorem for example and also have relatively simple algebraic properties that makes them an excellent laboratory for results in algebraic number theory. I will assume that you are familiar with basic algebraic number theory. Namely, the unique factorizatio...
متن کاملRecovering Short Generators of Principal Fractional Ideals in Cyclotomic Fields of Conductor pα qβ
Several recent cryptographic constructions – including a public key encryption scheme, a fully homomorphic encryption scheme, and a candidate multilinear map construction – rely on the hardness of the short generator principal ideal problem (SG-PIP): given a Z-basis of some principal (fractional) ideal in an algebraic number field that is guaranteed to have an exceptionally short generator with...
متن کاملSparse Representation for Cyclotomic Fields
Currently, all major implementations of cyclotomic fields as well as number fields, are based on a dense model where elements are represented either as dense polynomials in the generator of the field or as coefficient vectors with respect to a fixed basis. While this representation allows for the asymptotically fastest arithmetic for general elements, it is unsuitable for fields of degree > 10 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 1997
ISSN: 0022-314X
DOI: 10.1006/jnth.1997.2184